.C i { 1 61— .
Math. Control Signals Systems (1990) 3: 61-80 Mathematlcs Of COntrOI,

Signals, and Systems

© 1990 Springer-Verlag New York Inc.

State Representations of Linear Systems
with Output Constraints*

J. M. Schumachert

Abstract. We derive state space representations for linear systems that are
described by input/state/output equations and that are subjected to a number of
constant linear constraints on the outputs. In the case of a general linear system,
the state representation of the constrained system is shown to be essentially
nonunique. For linear Hamiltonian systems satisfying a nondegeneracy condition,
there is a natural and unique choice of the representation which preserves the
Hamiltonian structure. In the linear systems setting we give an algebraic proof that
a system with n degrees of freedom under k constraints becomes a system with
n — k degree of freedom. Similar results are obtained for linear gradient systems.

Key words. Constrained linear system, Gradient systems, Hamiltonian systems,
State representation.

1. Introduction and Preliminaries

The purpose of this paper is to contribute to the understanding of the relation
between realization theory and physical modeling. Here, we understand “realiza-
tion theory” in a broad sense, as the theory of equivalent system representations.
“Physical modeling” is understood as the construction of dynamical models for
physical systems using constitutive equations and element connections.

Methods for physical modeling, in the above sense, are basic ingredients in every
engineering curriculum. Although this is not always made very explicit, the central
issue addressed by these techniques is the transformation of a given system of
differential and algebraic relations to another, more suitable, form. For instance,
we may obtain a system description for an electrical network by writing down the
equations that follow from the laws of Kirchhoff, Ohm, and Faraday. The resulting
system of equations will in general involve algebraic as well as differential relations.
The modeling problem is to obtain an equivalent description in standardized (for
instance, input/state/output) form. The setting up of Lagrangian equations for
constrained mechanical systems follows essentially the same route.

The problem of transforming a system of algebraic and differential equations to
a standardized form has also been considered in system theory, for instance, by
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Rosenbrock [R2] and Luenberger [L2], and more recently by Willems [W2] and
the author [S4]. However, it appears that these methods, which were develqped for
the class of general linear systems, are not able to bring out certain properties than
we expect to see in the context of physical modeling. A simple example may help
to clarify this point. Consider two masses attached to springs, each subject to an
external force, and assume that the motion is constrained by a rigid connection
between the two masses. Equations may be written down as follows:

my 3, () + kyy,(t) = u, (1), (1.1
m, 3, (1) + ky2(t) = u,(0), (1.2)
y1(8) = y2(2). (1.3)

In the framework of Willems [W2], the “behavior” defined by these equations is
simply the set of all trajectories (y;(*), y5(*), 1 (), u5(+))" that satisfy (1.1)—(1.3).
Among these trajectories, there are harmonic solutions, for instance,

y1() = y,(t) = sin wt, (1.4)
() = (k, — myw?) sin wt, (L5)
Uy(t) = (ky — myw?) sin wt. (1.6)

These solutions show no value of w having a special significance. The situation
changes, however, if we associate with each trajectory the function

W(1) = uy (), (1) + u2(1)y(2) (1.7)

which expresses the work done on the system. For the harmonic solutions above,
we get

W, () = [(k; + k) — (m; + m,)®?] w sin wt cos wt. (1.8)

From this, we see that there is one particular value of w that leads to a nontrivial
harmonic solution in which no work is done on the system:

12
w, = (_’{1__‘*‘_&2__) . (1.9)

Of course, w, is, according to common terminology, the natural frequency of the
connected system.

Our example is sufficiently general to warrant the conclusion that the natural
frequencies of a connected system will in general not be recognized if we follow the
viewpoint of [W2]. This is no surprise since the framework of [W2] is developed
for the class of general linear systems, and, at this level, there is no notion of energy
which serves to distinguish the “natural” frequencies from other frequencies. The
same phenomenon occurs in any other setting for transformations of general
systems of linear equations, such as the one provided by [R2].

The present paper aims to explain the seeming discrepancy between modeling
with the techniques of [W2] and [S4] on the one hand, and “physical modeling”
on the other hand. We shall show that a link between the two can be formulated in
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geometric terms, i.e., using particular structures of vector spaces, in the spirit of
modern treatments of classical mechanics (see [AM]). Since our primary purpose
is to establish the existence of this link, full generality will not be pursued; in
particular, the treatment here is restricted to linear systems, and, even more in
particular, to systems of algebraic and differential equations that can be written as
standard input/state/output systems together with a number of static constraints
on the outputs. Furthermore, we feel free to use additional assumptions (although
not unreasonable ones) when this is convenient. Although we concentrate on
the connection between the general linear case and the more specific cases of
Hamiltonian linear systems and gradient linear systems, we can reasonably expect
that the links established in the linear situation can be extended to the nonlinear
case (see [S2] and [S3]).

We now quickly review a number of definitions and results from linear algebra
and from linear system theory that will be needed below. Consider first a linear
system in input/state/output representation

X(t) = Ax(t) + Buf(t), (1.10)
y(t) = Cx(t) + Du(t), (1.11)

where x(t), u(t), and y(¢) take values in finite-dimensional linear spaces X, U, and
Y, and where A, B, C, and D are linear mappings between the appropriate spaces.
To alleviate the notational burden, the time argument is often suppressed below.
With the system (1.10)—(1.11), we associate the transfer matrix

G(s) = C(sI — A)'B + D. ' (1.12)

The transfer matrix G(s) can be considered as a matrix over the field R(s) of rational
functions with real coefficients. The system (1.10)—(1.11) is said to be invertible if
G(s) is invertible as a matrix over R(s); similar definitions are used for left and right
invertibility. Because G(s) as defined by (1.12) is regular at infinity, we can also
consider G(s) as a matrix over the ring R_(s) of proper rational functions with real
coefficients. The ring R_(s) is a principal ideal domain with a unique maximal ideal
generated by the function s™}; we can therefore obtain a Smith normal form of G(s)
(see, for instance, p. 42 of [M1]) in which all nonzero elements are of the form s,
k; = 0 (see [H1]). The indices k; are called the orders of the zeros at infinity of G(s).

The orders of the zeros at infinity can also be expressed more directly in terms
of the mappings 4, B, C, and D. For this, we need the “V*-algorithm” (given on
p. 91 of [W3] for the case D = 0, and in [A1] for the more general case in which
D may be nonzero). Given A, B, C, and D as mappings between the state space X,
the output space Y, and the input space U, define

Vo= x, (1.13)
V¥ = {x € V*|3u e U such that Ax + Bue V*and Cx + Du =0}. (1.14)

This defines a decreasing sequence of subspaces of X. Because dim X is finite, there
must be some value of k for which V**! equals V¥, and then V**J will be equal to
V* for all j > 0. This limit subspace is denoted by V*(4, B, C, D) or simply by V*
if the reference is clear. Now, it has been shown in [M2] (see also [NS]) that the
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number of zeros at infinity of order > k of the system (1.10)-(1.11) is, for k > 1,
equal to

pi = dim(V*~! ~ B[ker D]) — dim(V* n B[ker D]). (1.15)

When D = 0, there are no zeros at infinity of order zero so that p, is equal to the
rank of the transfer matrix:

rank G(s) = dim im B — dim(im B n V*). (1.16)

This formula was first proved, by a different method, in [CM]. For the “D # 0”
case, we have

dim ker G(s) = dim{u € U|Bu € V* and Du = 0}. (1.17)

The subspace V* is the maximal subspace V' of X having the property that there
exists a feedback mapping F: X — U such that

(A+ BFR)V <V (1.18)
and
V < ker(C + DF) (1.19)

(see [W3] and [A1]).

The system (1.10)—(1.11) is said to have uniformly kth order zeros at infinity if it
is invertible and all its zeros at infinity are of order k. If k = 0, this simply means
that D must be invertible. For larger values of k, it is easily verified that (1.10)—(1.11)
has uniformly kth-order zeros at infinity if and only if D = 0, CA’B = 0 for j = 0,
..., k—2,and CA** B is invertible. Also, in this case, it is seen from the defining
algorithm (1.13)—(1.14) that

V* = Vk=ker Cnker CAn---nker CA* L. (1.20)

Now, let us recall some definitions from linear algebra that will be needed below
(see, for instance, Chapter XIII of [L.1]). Let X be a vector space over a field K of
characteristic # 2. A symmetric form on X is a bilinear mapping f: X x X — K that
satisfies f(x;, x,) = f(x,, x,) for all x, and x, in X. The form is said to be non-
degenerate if f(x,,x,) =0 for all x, in X only if x;, = 0. We use square brackets
below as a notation for symmetric forms, so we write [x,, x,] rather than f(x,, x,).
Note that positively is not required in the definition of a symmetric form. A linear
mapping A: X — X is said to be symmetric with respect to [+, -] if

[Axy, x,] = [Ax;, %] (1.21)

for all x, and x, in X.

A bilinear mapping g: X x X — K is said to be an alternating formif g(x,, x,) =
—g(x,, x;) for all x; and x, in X. The form is said to be nondegenerate under the
same condition as in the symmetric case. We use round brackets to denote alter-
nating forms, writing (x,, x,) rather than g(x,, x,). A vector space equipped with a
nondegenerate alternating form is called a symplectic space; such spaces are always
even-dimensional [L1, p. 371]. For a symplectic space, we can always find a
symplectic basis, i.e., a basis in which the alternating form (x,, x,) can be written as
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x1Jx, with

0 -1
J = . 1.22
( J 0 ) (1.22)
Given a subspace V of a symplectic space X, its symplectic orthoplement is
V) = {xe X|(v,x) =0forallve V}. (1.23)

Simple rules such as dim V& = codim ¥ and (V n W) = VD + W are freely
used.

Now, let U and Y be vector spaces over a field K. A bilinear mapping h: U x Y- K
is called a duality between U and Y if it is nondegenerate in the sense that h(u, y) = 0
for all u € U implies y = 0, and h(u, y) = 0 for all y € Y implies u = 0. Dualities are
denoted below by sharp brackets: we write {u, y) rather than h(x, y). Spaces that
are connected by a duality must have equal dimension. If Y; is a subspace of Y, its
orthogonal space is the subspace of U that is defined by

Yt = {ue Ul{u,y) =0forall ye Y;}. (1.24)

Again, simple rules concerning dimensions and concerning sums and intersections
are used without comment.

If X is a space equipped with a symmetric form, then every subspace of X can
also be equipped with a symmetric form in a natural way; we simply take the
restriction of the form to the given subspace. The same is not true for symplectic
spaces, as is already evident from the fact that symplectic spaces must have even
dimension. However, we do have the following result.

Lemma 1.1. Let X be a symplectic space and let V be a subspace of X. Let W be a
complement of V A VY in V. Under these conditions, W is a symplectic space with
respect to the restriction of the alternating form on X to W.

Proof. There is a natural isomorphism between W and the factor space
V/(V A VD), and this isomorphism makes the restricted alternating form on W
correspond to the induced alternating form on the factor space. It is easily seen that
V/(V A VD) is symplectic with respect to the induced form. |

In a similar fashion, we can prove that if U and Y are dual spaces and Y; is a
subspace of Y, then there is a natural induced duality between Y; and any comple-
ment of Y;* in U.

2. The General Linear System Case

Consider a linear system in input/state/output form:
X(t) = Ax(t) + Bu(t), .1
y(t) = Cx(t) + Du(t). (2.2)

Now assume that we constrain the outputs to lie in a certain subspace of the output



66 J. M. Schumacher

space Y:
y) ey, Y,c¥ 2.3)

The three equations (2.1)—(2.3) still describe a linear system in the sense of [W1]
(the set of input/output functions (u(*), y(*)) for which there exists a state function
x(+) such that (2.1), (2.2), and (2.3) are satisfied forms a linear subspace of the vector
space of all input/output functions), but it is, of course, not a description in state
space form. So we may ask how to obtain minimal state representations for the
system described by (2.1)-(2.3). We have to specify a notion of equivalence of course;
we use external equivalence (see [W1], [BY] and [S4]). As a matter of fact, the
question just posed is a particular instance of a problem for which a solution
algorithm was given in [S4]. So we only have to see what the procedure in that
paper leads to for the special case at hand.

Let H be a linear mapping acting on Y such that ker H = Y;. Let V*(Y;) denote
the subspace V*(4, B, HC, HD) of X. In other words, V*(Y;) is the limit of the
sequence of subspaces defined by

Vo =X, 2.4)
V¥*! = {x € V*|3u € U such that Ax + Bue V*and Cx + Due Y;}. (2.5)

Decompose X as X = X; @ X, where X; = V*(Y,). Let the mapping F: X — U be
such that V*(Y,) is (4 + BF)-invariant and (C + DF)V*(Y,) < Y;; we can always
arrange that ker F contains X, (this simplifies the notation somewhat, but is
otherwise inessential). Equations (2.1) and (2.2) may now be rewritten in the form

Xy =(Ayy + By F)x; + A%, + B (u — Fyxy), (2.6)
Xy = Az3%; + By(u — Fixy), (2.7
y=(C1 +DF1)x1 +‘C2X2+D(u_F1x1). (2.8)

By construction, we have H(C, + DF,) = 0, so that the restriction (2.3) can be
written as

HC,x, + HD(u — F;x,) =0. 2.9
We temporarily introduce new inputs by defining

u—Fx, =[G, GZ]<Z‘>, (2.10)

2

where G = [G; G,] is an invertible mapping satisfying
im G, = {ue U|Bue V*(Y;)and Due Y, }. (2.11)
This gives us the equations B,G, = 0 and HDG, = 0. We can now rewrite (2.7) as
X, = A%, + B,G,yv,, (2.12)
whereas the constraints can be formulated as
HC,x, + HDG,v, = 0. (2.13)

It is shown in [S4] that the only solution of the set of differential and algebraic
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equations given by (2.12) and (2.13) is the zero solution x,(t) = 0, v,(t) = 0. So, the
input/output trajectories of the system (2.1)—(2.2) that satisfy the constraint (2.3) are
described by

)'Cl = (All + BlFl)xl + Bl Gl Ul, (2.14)
y =(C, + DF,)x, + DG, v,, (2.15)
u= lel + lel' (2.16)

Now, we want to eliminate the auxiliary input v, in order to arrive at a description
in standard state space form. This can be done from (2.16) since G, is injective. Write

[G, G]'= (2) 2.17)
so that v, = K;u — K, F, x,. Equations (2.14) and (2.15) can be written as
X, =(A,, + B — G,K,)F,)x; + B,G, K u, (2.18)
y=(C, + DI — G,K,)F,)x, + DG, K, u, (2.19)
Kou=K,F,x,. (2.20)

This is the state space form derived in [S4]. Note that the original inputs u(t) have
been split up into certain combinations K, u(t) which still function as inputs, and
other combinations K,u(t) whose values are determined by the constraints. The
latter variables are, therefore, described as outputs.

The state space equations above can be rewritten to give them a slightly nicer
appearance. By construction, we have K; G, = I so that I — G, K, is a projection
with kernel

ker(I — G,K,;)=im G, = {ue U|Bue V*(Y,)and Due Y, }. (2.21)

The image of the projection is im G,, which may be any complement in im G, in
U. Note that if F: X — U is any mapping which acts on X, like (I — G, K,)F,, then
F has the properties

(A + BR)V*(Y,) = V*(Y,) (2.22)
and
(C+ DF)V¥Y)<c Y, (2.23)

and satisfies im F < im G,; and conversely, every F that fulfills these requirements
agrees on X, with some mapping of the form (I — G, K,)F,. Therefore, if we
coordinatize U as U; @ U, where

U, ={ueU|Bue V*(Y,)and Due Y} (2.24)

and U, is an arbitrary complement of U, then equations (2.18)—(2.20) can be written
in the form

X; = (A + BF)y;x, + By uy, (2.25)
y=(C, + D,F,,)x, + D,u,, (2.26)
uz = F21x1, (2.27)
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where:

(i) F satisfies (2.22) and (2.23), and
im F < Uy; (2.28)

(ii) F,, is the restriction of F to V*(Y;) considered as a mapping into U,;
(ili) (4 + BF),, is the restriction of 4 + BF to V*(Y,);

(iv) B, is the restriction of B to U, taken as a mapping into V*(Y;);

(v) C, is the restriction of C to V*(Y}).

So, we can summarize our conclusions as follows.

Theorem 2.1. Consider the system (2.1)-(2.3). Let V*(Y,) be the limit of the sequence
(2.4)-(2.5), and let U, be defined by (2.24). For any complement U, of U, in U, there
exists a mapping F: X — U with im F < U, that satisfies (2.22) and (2.23), and the
associated system (2.25)-(2.27) is externally equivalent to (2.1)—(2.3). Moreover, the
action of F on V*(Y,) (and hence, the system (2.25)-(2.27)) is determined uniquely by
the requirements (2.22), (2.23), and im F < U,.

Proof. It remains to prove the uniqueness claim. Let F and F’ both satisfy the
conditions (2.22), (2.23), and (2.28). Take x € V*(Y;), and write Fx = u, F'x = u'. It
follows from (2.22) and (2.23) that B(u — u’) € V*(Y;) and D(u — u') € Y}, so that
u — u’ € U, by the definition of U,. However, from (2.28) we also see that u —u’e
U,. Because U, n U, = {0}, it follows that u = u’, and the claim is proved. |

Corollary 2.2. In the situation of the theorem, the reduction of the number of inputs
that results from imposing the constraint (2.3) is equal to
Mg = codim Y, — codim(Y; + im G(s)). (2.29)
Proof. The theorem that we just proved shows that the number of inputs in the
constrained system is equal to
m, =dim{ue U|Bue V*(Y;)and Du € Y, }. (2.30)

Let H denote any mapping such that ker H = Y, ; then (1.17) shows that the above
quantity is equal to the dimension of the kernel of the rational mapping HG(s).
Denoting the original number of inputs by m = dim U, we can write

Mg =m — m, = dim U — dim ker HG(s) = dim im HG(s)
= dim im G(s) — dim[im G(s) n ker H]
= dim[im G(s) + Y,] — dim Y, (2.31)
which is equivalent to (2.29). o
Remark 2.3. The number of independent constraints is given by codim Y;. So, the

corollary states in particular that the number of inputs can never be reduced by an
amount larger than the number of independent constraints.
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It is seen that the constraints will not reduce the number of inputs if and only if
the transfer matrix G(s) maps into the constraint subspace Y,. In general, we can
say that only constraints on outputs that depend on the controllable part of the
system will reduce the number of inputs.

An important thing to note in the theorem is that, once a choice has been made
for a complement of U; = {u € U|Bu € V*(Y;) and Du € Y, } in U, the minimal state
representation of (2.1)—(2.3) is essentially unique. So, the ambiguity of choosing a
state representation for a system under output constraints is parametrized by the
freedom we have in selecting a complement to a given subspace of the input space.

3. Hamiltonian Systems

We use the following definition of a linear Hamiltonian system in state space form,
which is easily seen to be compatible with the definition given on pp. 111 and 150
of [S1].

Definition 3.1. Consider a linear system in input/state/output form
X(t) = Ax(t) + Bu(t), (3.1)
y(t) = Cx(¢). (3-2)

Assume that the state space X is equipped with a symplectic form denoted by (-, ),
and that the input and output spaces U and Y are dual with respect to a duality
denoted by <, ->. The system (3.1)—(3.2) is said to be Hamiltonian if the following
conditions are satisfied:

(i) (Ax,, x,) defines a symmetric form on X;
(ii) (x, Bu) = {Cx,u) forall xe X and u e U.

We also assume that B is injective.

The assumption on the injectivity of the input mapping B helps to avoid some
uninteresting singularities. Note that this assumption, under condition (ii), also
implies that the output mapping C is surjective: u € ker B is equivalent to 0 =
(x, Bu) = {(Cx, u) for all x, i.e., u € ker B if and only if u € (im C)*.

For a Hamiltonian system (3.1)—(3.2), the quadratic form H(x) = }(4x, x) is
called the Hamiltonian of the system, or the energy. The system is said to be
time-reversible if CA%* B = 0 for all nonnegative integers k (see p. 200 of [S1] for a
motivation of the terminology).

We now want to add the output constraint

y(H)e Y, forallt. (3.3)

To apply the general result, Theorem 2.1, we have to compute V*(Y,) and select a
complement U, to the subspace U, defined by (2.24). In the general situation, there
are no special candidates for the role of U,, and all complements of U, are equally
qualified. In the case of a Hamiltonian system, however, there is one particular
candidate, namely the subspace Y;' perpendicular to the constraint subspace Y;.
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Under suitable circumstances, this is indeed a complement of U,; one possible set
of sufficient conditions is given in the lemma below.

Lemma 3.2. Let (3.1)—(3.2) be a Hamiltonian system, and assume it has uniformly
second-order zeros at infinity (i.e., CB = 0 and CAB is invertible). Let a subspace Y;
of Y be given. Under these conditions, the subspace V*(Y,) is given by

V*(Y,) = {xe X|Cx e Y, and CAx e Y,}, 3.4)
and Yi* is complementary to the subspace U, = {u € U|Bue V*(Y,)} if and only if
CABY! Y, ={0}. (3.5)

Proof. Following the defining algorithm (2.4)-(2.5), we get (because CB = 0)

VA(Y,) = {xe X|Cxe Y,}, (3.6)
V3(Y;) = {xe X|Cxe Y, and CAxe Y,}, (3.7
V3(Y;y) = {x € V3(Y,)|3u € U such that CA%x + CABue Y, }. (3.8)

Because CAB is invertible, we have V3(Y,) = V3(Y;), so that V*(Y;) = V(Y;) is
given by (3.7). Therefore, again using CB = 0, we obtain

U, ={ueU|CABue Y,} = (CAB)'Y, (3.9)

which shows that the dimensions of U, and Y; are equal. So, Y;* is a complement
to U, if and only if Y;* n U, = {0}; by (3.9), this is equivalent to (3.5). B

Remark 3.3. It should be noted that (3.5) will hold for every subspace Y, of Y if
the matrix CAB is positive definite. This is easy to see; suppose u € Y;* is such that
CABu e Y,, then we will have

{CABu,u) =0. (3.10)

If CAB is positive definite, this implies that u = 0. The positive definiteness condi-
tion can be interpreted in physical terms. If «(t) has the dimension of a force and
y(t) that of a displacement, then (CAB)™* will have the dimension of a mass. Under
the conditions of the theorem (uniformly second-order zeros at infinity), the matrix
(CAB)™! is the leading term in the power series development around infinity of the
inverse transfer function:

G7!(s) = (CAB)™*s? + lower-order terms in s. (3.11)

In a simple mechanical vibratory system of the form Mj + Ky = u, the inverse
transfer function (also called “mechanical impedance,” see for instance p. 119 of
[D]) is obviously given by

Gls)=Ms? + K (3.12)

and the mass matrix M might be determined from the impedance by multiplying
by 5”2 and taking the limit as s goes to infinity. Following the same procedure for
(3.11) would give (CAB)™ as a result, and so we call this matrix the effective mass
matrix of the system (3.1)—(3.2). The requirement that CAB is positive definite can
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now be formulated as: the effective mass matrix of (3.1)—(3.2) should be positive
definite.

If we let C,, denote the restriction of C to V*(Y;) taken as a mapping into Y;,
and if we coordinatize Y as Y; @ Y, where Y, is an arbitrary complement to Y,
then it already follows from Theorem 2.1 that an equivalent state space form for
equations (3.1) and (3.2) under the constraint (3.3), with state space X| = V*(Y;), is
given by

X, =(A 4+ BF),;x, + Byuy, (3.13)

y1=0Cyx, (3.14)

u, = Fy,x,, (3.15)

y, =0, (3.16)
where F is any mapping satisfying

(A + BR)V*(Y,) = V¥*(Y,). (3.17)

The notation here is as in the previous section; note that the requirement (2.23) is
automatically satisfied in cases, such as the one considered in this section, where
the mapping D is equal to zero. The following theorem, which is the main result of
this section, states what more can be said when F is chosen such that its range space
lies in the particular subspace Y;*. Similar results were given in [S3] (for a much
more general situation than considered here) and in [H2], but in these it was not
proved that these equations do indeed give an equivalent representation of the
original system with constraints.

Theorem 3.4. Let (3.1)—(3.2) be a Hamiltonian system with uniformly second-order
zeros at infinity. Let Y, be a subspace of Y, and consider the system (3.1)—(3.2) with
the constraint (3.3). If the complementarity condition (3.5) is satisfied, a feedback
mapping ranging in Y- may be selected that satisfies (3.17). The state space of the
equivalent description (3.13)—(3.16) is then a symplectic space with respect to the form
it inherits from the original state space X, and (3.13)-(3.14) is a Hamiltonian system
with respect to this symplectic form and the induced duality between Y, and U, =
{ue U|Bue V*(Y,)}. Finally, the energy function of (3.13)-(3.14) is the energy
Sfunction of (3.1)—(3.2) restricted to X, .

Proof. To show that X, = V*(Y,) inherits a symplectic structure from X, we use
Lemma 1.1 with {x|Cx € Y,} in the role of the subspace V and V*(Y;) in the role
of the subspace W. First, we note that the symplectic orthoplement of {x|Cx € Y, }
is equal to BY;*, because

{x|Cx e Y;} = {x|[{Cx,u) = Oforall ue Y/}
= {x|(x, Bu) = 0 for all u e Y;*} = (BY;" ). (3.18)
It follows from CB = 0 that BY;* is contained in {x|Cx € Y, }, so that, obviously,
{xICx e Y;} n{x|Cxe Y;}') = BY;:. (3.19)
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Therefore, Lemma 1.1 will give us the result we want if we can show that V*(Y;)is
a complement of BY! in {x|Cx € Y;}. To show that the two subspaces intersect
only in 0, assume that u € Y;* is such that Bu e V*(Y;). It follows from (3.7) that
CABue CABY* nY, = {0}. Because CAB is invertible, this indeed proves that
u = 0. To complete this part of the proof, we have to show that {x|Cxe€ Y} =
V*(Y,) + BY:. Take x such that Cx e Y;; we have to find ue ¥;* such that
x — Bu € V*{Y,). Because CABY;' is a complement of Y; in the output space Y,
there exists a u € Y;* such that

CAx — CABueY;. (3.20)

Because we also have C(x — Bu) = Cx € Y;, we see that x — Bu € V2(Y;) = V*(Y;),
as desired.

Now, since F maps into Y;* and BY;" is contained in the symplectic orthoplement
of V*(Y;), we have

((A + BF)xy, x,) = (Ax4, X;) (3.21)

for x, and x, from V*(Y;). It follows that condition (i) in the definition of a
Hamiltonian system is satisfied, and that the Hamiltonian of the constrained system
is the restriction to V*(Y;) of the Hamiltonian of the original system. Because U,
is a complement to U, = Y;*, the duality between U and Y can be restricted to a
duality between U, and Y;. It follows immediately that condition (ii) in the definition
of a Hamiltonian system is also satisfied by the constrained system. [ |

Remark 3.5. Suppose that the dimension of the original state space is 2n, and that
we impose k constraints; i.e., the codimension of Y; is k. Under the conditions of
the theorem, we know that the state space of the constrained system, V*(Y;), is a
complement to BY;" in {x|Cx € Y;}. Because B is injective and C is surjective, it
follows from this that the dimension of V*(Y;) is 2n — 2k. This is the well-known
property that “a system with n degrees of freedom under k constraints becomes a
system with n — k degrees of freedom.” We have given here an algebraic proof of
this fact; in textbooks, we usually find proofs that are based on some limit argument
(see the classical reference [R1], but also the more recent treatment in [A2]).

We have seen that, under mild conditions, output constraints on a Hamiltonian
system uniquely define a new Hamiltonian system. Some properties of the original
system will go over to the constrained system; such properties are called “hered-
itary.” In the following proposition, we list a number of hereditary properties.

Proposition 3.6.  Under the conditions of Theorem 3.4, the constrained system (3.13)—
(3.14) will have uniformly second-order zeros at infinity. If the original system (3.1)~
(3.2) has a positive definite effective mass matrix, then the same will be true for the

constrained system. If the original system is time-reversible, then so is the constrained
system.

Proof. We use the notation of the theorem. Because CB =0, we have
C(A + BF)B = CAB. This shows immediately that C,,(4 + BF);, B, is injective
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and hence invertible. The fact that CB = 0 also implies that C,, B;, = 0, and so we
have shown that constrained system has uniformly second-order zeros at infinity.

Now, assume that the effective mass matrix of the original system, (CAB)™, is
positive definite. Take u from U;. Using (3.21), we can write

(Ci1(A + BF),,B,,u, u> = (A + BF)Bu, Bu) = (ABu, u) = (CABu, uy > 0,
(3.22)

with equality if and only if u = 0. We see that the matrix (C,,(4 + BF),,B,,)™" is
also positive definite, which proves our second claim.

It remains to show that the property of time-reversibility is hereditary. We first
show that the following property holds for all k > O:

(4 + BFfxy, x;) = (A¥%y, x5) (%1, %, € VX(Y))). (3-23)

This property is trivially true for k = 0, and its validity for k = 1 is asserted by (3.21).
The general case is proved by induction: suppose that (3.23) holds for certain k, then,
for x; and x, from V*(Y,),

((4 + BFY*'x,, x,) = (A(4 + BF)x,, x,) = (Ax,, (A + BF)x,)
—((4 + BF)*x,, Ax,) = —(A*x,, Ax,) = (Ax,, A*x,)
= (Akﬂxl, x5). (3.24)

In this derivation we used the validity of the formula for k = 1, condition (i) in the
definition of a Hamiltonian system, the sympletic property, the induction assump-
tion, the symplectic property again, and condition (i) again. Now, suppose that the
original system is time-reversible, i.e., the mappings appearing in (3.1)-(3.2) satisfy
CA**B = O for all k > 0. By condition (ii) of the definition and the property that we
just proved, it then follows that

I

{C(A + BF)*Bu,,u,» =0 (3.25)
for all u, and u, from U,, which, by the fact that U, and Y, are dual spaces, is enough
to show that C, ,((4 + BF),,)*B;; =0forallk > 0. [ |

This proposition allows us to conclude, for instance, that any system that is obtained
by putting linear constraints on the outputs in the Hamiltonian system Mj + Ky =
u (M and K symmetric, M positive definite) is a time-reversible Hamiltonian system
with a positive definite effective mass matrix.

4. Gradient Systems

The following definition of a linear gradient system in input/state/output form is
used here; it is easily seen to be equivalent to the one given on p. 224 of [S1].

Definition 4.1. Consider a linear system in input/state/output form (3.1)—(3.2).
Assume that the state space X is equipped with a nondegenerate quadratic form
denoted by [ -, -], and that the input and output spaces are dual with respect to a
duality denoted by -, - >. The system (3.1)—(3.2) is said to be a gradient system (with
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respect to the quadratic form [+, -] and the duality <-, - ) if the following require-
ments hold:

(i) A is symmetric with respect to [ -, -J;
(i) [Bu, x] =<u,Cx)forallue U and x € X.

We also assume that B is injective.

As in the case of Hamiltonian systems, injectivity of B implies surjectivity of C.
We call the quadratic form $[Ax, x] the generalized potential of the system; note
that Ax may be seen as the gradient of $[ 4x, x] with respect to the symmetric form
[-, -1

We now consider the constraint (3.3) in this context. As before, we are looking
for conditions under which we can define a constrained system which inherits,
in a natural way, the special structure of the original system. We define U, =
{u|Bu € V*(Y,)} as in the Hamiltonian case, and look for complements of U, in U.
Again, a natural candidate is Y;-. It turns out that, as soon as this candidate
qualifies, the description that we derive from it has all the desired properties.

Theorem 4.2. Let (3.1)—(3.2) be a gradient system, considered under the constraint
(3.3), and assume that Y is a complement to U, = {u|Bu € V*(Y,)} in U. Let
F: X - U be a feedback mapping such that im F c Y;' and such that V*(Y,) is
(4 + BF)-invariant. The equivalent state space representation (3.13)—(3.16) is then
such that (3.13)—(3.14) is a gradient system with respect to the restriction of the form
[, -1to V*(Y,) and of the duality (-, - ) to the pair of spaces (U, Y;). The generalized
potential function of this system coincides with the generalized potential of the original
system restricted to V*(Y,).

Proof. The fact that (3.13)—(3.16) is a representation of the system (3.1)—(3.2) under
the constraint (3.3) follows from the general theory. Because F maps into Y;* and
V*(Y;) is mapped by C into Y;, we have

[(A4 + BF)xy, x,] = [Ax;, x,] + {Fx;, Cx;> = [Ax,, x,] (4.1)

for all x, and x, from V*(Y;). This shows that condition (i) of the definition of a
gradient system is satisfied, and also that the generalized potentials of the uncon-
strained system and the constrained system are equal on V*(Y;). The fact that the
duality between U and Y can be restricted to U; and Y, follows from the assumption
that U, is complementary to Y;*, and condition (ii) for the constrained system is
then immediate from the corresponding property of the original system. |

If the symmetric form on X is definite (i.e., [x, x] = 0 implies x = 0 so the form is
either positive or negative definite), then we can show that the complementarity
condition is satisfied for all possible restrictions.

Proposition 4.3.  Assume that the system (3.1)—(3.2) is a gradient system with respect
to a nondegenerate symmetric form [, -] in the state space X and a duality (-, ->
between U and Y. Assume that the symmetric form [-, -] is definite. Under these
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conditions, the subspace U, = {u € U|Bue V*(Y,)} is complementary to Y;* for any
subspace Y, of Y.

Proof. We first show that the definiteness of the symmetric form on X implies
that CB is invertible. Because CB is square, it is sufficient to prove the injectivity.
So, suppose that CBu = 0; then

[Bu, Bu] = (CBu,u> =0 (4.2)
which implies that u = 0. From the invertibility of CB, it follows that
V¥*(Y;) = {xe X|Cxe Y,}. 4.3
As a consequence, we have
U ={ueU|CBue Y} =(CB)'Y;. 4.9

This shows thatdim U, + dim Y;* = dim U, so that the complementarity condition
will hold if U, n Yi+ = {0}.
For gradient systems in general, we have

{x|]Cx e Y,} = (BY, M (4.5)

(proof as in the Hamiltonian case, see (3.18)). When the form is definite, this implies
that V*(Y;) has zero intersection with BY;*. Now, take u € U, n Y;*; then Bue
V*(Y;) N Yt = {0}, so that u = 0. [ |

In gradient systems that arise as descriptions of RLC networks, the form on the
state space X is usually not definite, unless we have either no capacitors or no
inductors in the network. In order to obtain suitable sufficient conditions for output
constraints to be well behaved in the context of general RLC networks, a further
analysis of the gradient systems defined by such networks should be undertaken
(following up on the work in [BM]); however, we will not do this here.

The invertibility of the mapping CB, which, as we have seen, holds automatically
when the form on X is definite, is in itself already enough to obtain the expression
(4.3) for V*(Y,). This allows us to draw the conclusion that a gradient system with
uniformly first-order zeros at infinity and with state space dimension n (“n degrees
of freedom”) becomes a system with n — k degrees of freedom if k linear constraints
are imposed on the outputs. Note that the property of having uniformly first-order
zeros at infinity is “hereditary™ if the original system (3.1)—(3.2) has this property,
then the same holds for the constrained system (3.13)—(3.14): C maps V*(Y,) into
Y,, and this implies that if C;,B,,u =0, then CBu = 0, so that C,, B;, will be
invertible if CB is. (We also use here the fact that the invertibility of CB implies that
C,. B, is square.)

5. Examples

We work out two simple examples in order to illustrate the abstract theory and to
show that the theory leads to the answers that we should expect.
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Mechanical Example

Our first example is the same as in Section 1. State space equations for a mass on
an ideal spring can be written as follows:

diq\ ., (0 m*\(q 0
o o o
y)=[1 0] (f,)(z). 52)

The force (input) is u(t), the displacement (output) is y(t). It is easily verified that the
above equations constitute a Hamiltonian system with respect to the symplectic

YO R

u,y> =uy (5.4)

between U = R and Y = R. The system has a second-order zero at infinity. Let
us now take two such systems and connect them by requiring that the outputs
(displacements) must be the same, i.e., the two masses are firmly attached to each
other. The system before connection is described by the matrices

on X = R? and the duality

0 m' 0 0 00
~k 0 0 0 10 1 000
A: = =
ooomgl’Boo’C(001o>’
0 0 =—k 0 01

(5.5)

and is a Hamiltonian system having uniformly second-order zeros at infinity with
respect to the symplectic form

41 4,
p p L L .
LY =q1P1 — 1Py *+ 42D2 — 42D> (5.6)
q; q2
P 23

on X = R* and the duality

<<§;>= (Z:>> = Y1l + Yol (5.7

between Y = R? and U = R The connection constraint is expressed by

y)eY, = span{(i)}. (5.8)
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We readily compute that a basis for ¥*(Y;) is given by the two vectors

1 0
0 my
. E 0 (5.9)
0 m,

‘We also have

Yt = span {(_1 1)}, (5.10)

and so we are looking for a mapping F: X — U which ranges in this subspace and
which is such that V*(Y;) becomes A + BF-invariant. Upon computing, we find
that this requires

1 0

0 m 1 myk, —mk

F 1) 271 T2 . ]
10 <"1>|: m; + m, O:l G1)
0 m,

Here, we need that m, + m, is not equal to zero; note that this is precisely the
condition for Y;* to be complementary to U,. We assume that this condition is
fulfilled. It then follows from (5.11) that the action of A + BF on V*(Y,) is given by

om| fom| [ O
my m,
= . 12
(A4 + BF) o 1 0 ki +ky 0 (5.12)
0 m, 0 m, my + my

In order to obtain a matrix representation for the connected system, we have to
select basis vectors in V*(Y;), U;, and Y. It is not difficult to show (see p. 200
of [S1]) that “canonical” bases may be chosen in the following way for every
Hamiltonian system (3.1)-(3.2) satisfying CB = 0. First select an arbitrary basis for
the output space Y. Next, determine the dual basis u, ..., u,, for the input space U.
Finally, it is possible to find a symplectic basis {q,, ..., ¢, P1, - .-, P, fOr the state
space X in such a way that By; = p,_..;fori=1,...,m.

We can carry out this procedure in the case at hand. A basis vector for the output
space Y, is [1 1]7. The dual basis vector in U, is (m; + my)™ [m, m,1". A
corresponding symplectic basis for X is given by

1 0
0 o m
1 (my, +my)™ 01 - (5-13)
0 m,

The matrices describing the connected system are then

_ 0 (m, + mz)—l _ 0 —
(A+BF)11*<-—(k1 + k) 0 >, B11—<1>a C.,=[1 0]
(5.14)
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An Electrical Network

For our second example let us consider the parallel connection of two capacitors.
Before connection, the two capacitors can be described by the equations

d (x _n.l* 1 0\(u,

E(x)(r)—o (xz)(m-(o 1>(u2>(z), (5.15)
AT _ cit 0 X,
(y)(t) —< 0 cr) (m)“)’ (5.16)

where the inputs are currents and the outputs are voltages, and C, and C, are the
capacitances of the two capacitors. This system is a gradient system with respect to

the quadratic form
KXI)’ <x>] = Clxi+ Gl (5.17)
X2 X

<(§;),(::>> = YUy + Yol (5.18)

between Y and U. Now, establishing a parallel connection between the two capaci-
tors means that the voltages across the two capacitors must be equal, which leads
to the output constraint

on X and the duality

y1(8) = y2(0). (5.19)
So the constraint subspace Y, is given by

Y, = span{(i)}. (5.20)
U, = span {(g:)} (5.21)

so that U, is complementary to Y;* = span{[1 —1]"}if and only if C, # —C,.
Assuming this, we have to find a feedback mapping F ranging in Y;! such that
V*(Y,) = span{[C; C,]"}becomes(A4 + BF)-invariant. This is satisfied by taking
F =0, which leads to (4 + BF),, = 0. We can take [1 1]T as a basis vector for
Yy; the dual basis vector in U, is (C; + C,)"'[C, C,]". Taking (nominally) the
same vector as a basis vector for X, we obtain B;, = 1. Finally, C,, is then given
by (C, + C,)7*, because

We easily compute that

cito0 1 C, 1 1
- =—| "} 5.22
( 0 Cz—l) €+ G (C2> G+ G <1> (22
The equations for the connected system now take the form
x(t) = u(t), (5.23)

() = (Cy + C) 7' x(1). (5.24)
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Here, the old inputs (currents) are expressed in terms of the new input by

u, 1 C,
= 5.25
(“2) C+6G (Cz) ! 5:29)
so that the new input can be written in terms of the old inputs as
U=, + u,. (5.26)

6. Conclusions

It has been shown in this paper that the transformation of a linear with output
constraints to standard input/state/output form leads to an essentially nonunique
result, and that the indeterminacy can be described by the freedom we have in
selecting a complement to a given subspace in the input space. For the more specific
categories of linear Hamiltonian systems and linear gradient systems, the notion of
energy, expressed through special vector space structures, serves to remove the
indeterminacy, and leads to results that are familiar from physical modeling. We
have thus shown how the general theory of transformations of linear systems can
be connected to the standard methods of physical modeling, at least for the case of
linear systems under output constraints.

The analysis has also revealed a “nondegeneracy” condition, which appears in
geometric terms as the requirement that two given subspaces should be comple-
mentary. The viewpoint used in this paper seems less suitable for a treatment of the
particular cases in which the complementarity condition does not hold. An alter-
native framework for analysis can be set up by prescribing new external variables
in conjunction with the output constraints. This point of view is currently under
investigation.
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